If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2-5=-10m
We move all terms to the left:
4m^2-5-(-10m)=0
We get rid of parentheses
4m^2+10m-5=0
a = 4; b = 10; c = -5;
Δ = b2-4ac
Δ = 102-4·4·(-5)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{5}}{2*4}=\frac{-10-6\sqrt{5}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{5}}{2*4}=\frac{-10+6\sqrt{5}}{8} $
| m2+13m+42=0 | | a4+7=16 | | 3-2x+5x=7+3x | | -6=-2n-1 | | A-6=3a-8 | | 17u+2=19 | | 10y-20=3y-36 | | c7+3=3 | | 12y+24=6y | | 9l=90 | | 6n^2+11n=17 | | 2(q+5)=10 | | 9w+6=15 | | 1=((97.5/(10^(7.06623-(1507.434/(x+214.985)))))+(52.5/(10^(6.95805-(1346.773/(x+219.693)))))) | | 7x+4=+16 | | 29=u/4+5 | | 21x-15x=84 | | M-(m/4)=(7/2)+(m/4) | | 35y=40 | | -25=-3x=8 | | 4n–10=10 | | 6x=2x=90 | | 9y-18=`18 | | y=48/16*2-1 | | 4x+20+2(—7)=0 | | 12x+4-3x=14x-38 | | 7=3-5z | | -6u-16=-4(u+7) | | 2(w-4)=8w+28 | | 4x-6=3x-42 | | 2u-40=-4(u-5) | | -(2/29)=60/x |